
Download free eBooks at bookboon.com

Introduction to Soft Computing

88

Neural Computing

4 Neural Computing

Neural Computing, e.g. Artiicial Neural Networks, is one of the most interesting and rapidly growing

areas of research, attracting researchers from a wide variety of scientiic disciplines. Starting from the

basics, Neural Computing covers all the major approaches, putting each in perspective in terms of their

capabilities, advantages, and disadvantages.

An Artiicial Neural Network (ANN) is an information processing paradigm that is inspired by the

way of biological nervous systems, such as the brain, process information. he key element of this

paradigm is the structure of the information processing system. It is composed of a large number of

highly interconnected processing elements (neurones) working in unison to solve speciic problems.

ANNs, like people, learn by example. An ANN is conigured for a speciic application, such as pattern

recognition or data classiication, through a learning process. Learning in biological systems involves

adjustments to the synaptic connections that exist between the neurones. his is true of ANNs as well.

4.1 The brain as an information processing system

he human brain contains about 10 billion nerve cells, or neurons. On average, each neuron is connected

to other neurons through about 10 000 synapses. (he actual igures vary greatly, depending on the

local neuroanatomy.) he brain’s network of neurons forms a massively parallel information processing

system. his contrasts with conventional computers in which a single processor executes a single series

of instructions.

Table 5: Description of selected DE Strategies (adapted from http://www.idsia.ch)

http://www.idsia.ch
http://bookboon.com/

Download free eBooks at bookboon.com

Introduction to Soft Computing

89

Neural Computing

Against this, consider the time taken for each elementary operation: neurons typically operate at a

maximum rate of about 100 Hz, while a conventional CPU carries out several hundred million machine

level operations per second. Despite of being built with very slow hardware, the brain has quite remarkable

capabilities:

•	 Its performance tends to degrade gracefully under partial damage. In contrast, most

programs and engineered systems are brittle: if you remove some arbitrary parts, very likely

the whole will cease to function.

•	 It can learn (reorganize itself) from experience.

•	 his means that partial recovery from damage is possible if healthy units can learn to take

over the functions previously carried out by the damaged areas.

•	 It performs massively parallel computations extremely eiciently. For example, complex

visual perception occurs within less than 100 ms, that is, 10 processing steps!

As a discipline of Artiicial Intelligence, Neural Networks attempt to bring computers a little closer to

the brain’s capabilities by imitating certain aspects of information processing in the brain, in a highly

simpliied way. he comparison of computer and brain abilities is shown in Table 5.

he brain is not homogeneous. At the largest anatomical scale, we distinguish cortex, midbrain, brainstem,

and cerebellum. Each of these can be hierarchically subdivided into many regions, and areas within

each region, either according to the anatomical structure of the neural networks within it, or according

to the function performed by them. he overall pattern of projections (bundles of neural connections)

between areas is extremely complex, and only partially known. he best mapped (and largest) system

in the human brain is the visual system, where the irst 10 or 11 processing stages have been identiied.

We distinguish feedforward projections that go from earlier processing stages (near the sensory input)

to later ones (near the motor output), from feedback connections that go in the opposite direction. In

addition to these long-range connections, neurons also link up with many thousands of their neighbours.

In this way they form very dense, complex local networks.

he basic computational unit in the nervous system is the nerve cell, or neuron. A biological neuron

has, see Figure 61:

•	 Dendrites (inputs) a neuron

•	 Cell body

•	 Axon (output)

http://bookboon.com/

Download free eBooks at bookboon.com

Introduction to Soft Computing

90

Neural Computing

Figure 61: A biological neuron (adapted from http://www.idsia.ch

A neuron receives input from other neurons (typically many thousands). Inputs sum (approximately).

Once input exceeds a critical level, the neuron discharges a spike – an electrical pulse that travels from

the body, down the axon, to the next neuron(s) (or other receptors). his spiking event is also called

depolarization, and is followed by a refractory period, during which the neuron is unable to ire.

he axon endings (Output Zone) almost touch the dendrites or cell body of the next neuron. Transmission

of an electrical signal from one neuron to the next is efected by neurotransmittors, chemicals which are

released from the irst neuron and which bind to receptors in the second. his link is called a synapse.

he extent to which the signal from one neuron is passed on to the next depends on many factors,

e.g. the amount of neurotransmittors available, the number and arrangement of receptors, amount of

neurotransmittors reabsorbed, etc.

Brains learn. From what we know of neuronal structures, one way brains learn is by altering the strengths

of connections between neurons, and by adding or deleting connections between neurons. Furthermore,

they learn “on-line”, based on experience, and typically without the beneit of a benevolent teacher. he

eicacy of a synapse can change as a result of experience, providing both memory and learning through

long-term potentiation. One way this happens is through release of more neurotransmitters. Many other

changes may also be involved, see Figure 62.

http://www.idsia.ch
http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Introduction to Soft Computing

91

Neural Computing

Figure 62: A biological neuron (adapted from http://www.idsia.ch)

www.mastersopenday.nl

Visit us and ind out why we are the best!

Master’s Open Day: 22 February 2014

Join the best at

the Maastricht University

School of Business and

Economics!

Top master’s programmes

•	 	33rd	place	Financial	Times	worldwide	ranking:	MSc	
International	Business

•	 1st	place:	MSc	International	Business
•	 1st	place:	MSc	Financial	Economics
•	 2nd	place:	MSc	Management	of	Learning
•	 2nd	place:	MSc	Economics
•	 	2nd	place:	MSc	Econometrics	and	Operations	Research
•	 	2nd	place:	MSc	Global	Supply	Chain	Management	and	
Change

Sources: Keuzegids Master ranking 2013; Elsevier ‘Beste Studies’ ranking 2012;

Financial Times Global Masters in Management ranking 2012

Maastricht

University is

the best specialist

university in the

Netherlands

(Elsevier)

http://www.idsia.ch
http://bookboon.com/
http://bookboon.com/count/advert/f7bfcf34-764f-4096-b68c-a27c00b0a12f

Download free eBooks at bookboon.com

Introduction to Soft Computing

92

Neural Computing

4.2 Introduction to neural networks

An artiicial neural network is a connectionist massively parallel system, inspired by the human neural

system. Its units, neurons (Figure 63), are interconnected by connections called synapse. Each neuron,

as the main computational unit, performs only a very simple operation: it sums its weighted inputs and

applies a certain activation function on the sum. Such a value then represents the output of the neuron.

However great such a simpliication is (according to the biological neuron), it has been found as plausible

enough and is successfully used in many types of ANN, (Fausett 1994).

A neuron X
i
 obtains input signals x

i
 and relevant weights of connections w

i
, optionally a value called

bias b
i
 is added in order to shit the sum relative to the origin. he weighted sum of inputs is computed

and the bias is added so that we obtain a value called stimulus or inner potential of the neuron s
i
. Ater

that it is transformed by an activation function f into output value o
i
 that is computed as it is shown in

equations (see Figure 63):

() 1

1

1
−−

=
+=

+=∑
is

i

n

j

ijiji

eo

bxws

,

and may be propagated to other neurons as their input or be considered as an output of the network.

Here, the activation function is a sigmoid, (Kondratenko and Kuperin 2003). he purpose of the activation

function is to perform a threshold operation on the potential of the neuron.

 Figure 63: A simple artiicial neuron

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Introduction to Soft Computing

93

Neural Computing

Activation functions

Most units in neural network transform their net inputs by using a scalar-to-scalar function called an

activation function, yielding a value called the unit’s activation. Except possibly for output units, the

activation value is fed to one or more other units. Activation functions with a bounded range are oten

called squashing functions. Some of the most commonly used activation functions are the following

(Fausett 1994).

 functionstepbinary

00

01

x

x
xf

00

functionlinearsaturated10

11

x

xx

x

xf

 () sigmoid standard
1

1
xe

xf −+=

() tangent hyperbolic
1

1
2

2

x

x

e

e
xf −

−

+
−=

 -
 ©

 P
h
o
to

n
o
n
s
to

p

> Apply now

REDEFINE YOUR FUTURE

AXA GLOBAL GRADUATE
PROGRAM 2015

http://bookboon.com/
http://bookboon.com/count/advert/030d71a6-2f39-462d-8d1e-a41900d437e0

Download free eBooks at bookboon.com

Introduction to Soft Computing

94

Neural Computing

Graphs of these activation functions are shown in Figure 64.

http://bookboon.com/

Download free eBooks at bookboon.com

Introduction to Soft Computing

95

Neural Computing

Figure 64: Graphs of activation functions.

Network topologies

Network topologies focus on the pattern of connections between the units and the propagation of data.

he basic models are the following:

•	 Feed-forward networks (Figure 65), where the data low from input to output units is

strictly feed-forward. he data processing can extend over multiple (layers of) units, but no

feedback connections are present, that is, connections extending from outputs of units to

inputs of units in the same layer or previous layers.

http://bookboon.com/

Download free eBooks at bookboon.com

Introduction to Soft Computing

96

Neural Computing

•	 Recurrent networks (Figure 66) contain feedback connections. Contrary to feed-forward

networks, the dynamical properties of the network are important. In some cases, the

activation values of the units undergo a relaxation process such that the network will evolve

to a stable state in which these activations do not change anymore. In other applications, the

change of the activation values of the output neurons is signiicant such that the dynamical

behavior constitutes the output of the network.

Figure 65: Feed-forward networks

Figure 66: Recurrent networks

Classical examples of feed-forward networks are the Perceptron and Adaline. Examples of recurrent

networks are Hopield nets.

http://bookboon.com/

Download free eBooks at bookboon.com

Introduction to Soft Computing

97

Neural Computing

Training of artiicial neural networks

A neural network has to be conigured such that the application of a set of inputs produces (either

‘direct’ or via a relaxation process) the desired set of outputs. Various methods to set the strengths of

the connections exist. One way is to set the weights explicitly, using a priori knowledge. Another way is

to ‘train’ the neural network by feeding it teaching patterns and letting it change its weights according

to some learning rule.

We can categorize the learning situations in two distinct sorts. hese are:

•	 Supervised learning or associative learning in which the network is trained by providing it

with input and matching output patterns. hese input-output pairs can be provided by an

external teacher, or by the system which contains the network (self-supervised).

•	 Unsupervised learning or self-organization in which an (output) unit is trained to respond

to clusters of pattern within the input. In this paradigm the system is supposed to discover

statistically salient features of the input population. Unlike the supervised learning

paradigm, there is no a priori set of categories into which the patterns are to be classiied;

rather the system must develop its own representation of the input stimuli.

Hebb rule

Both learning paradigms discussed above result in an adjustment of the weights of the connections

between units, according to some modiication rule. Virtually all learning rules for models of this type

can be considered as a variant of the Hebbian learning rule suggested by Hebb in the classic book

Organization of Behaviour (Hebb 1949). he Hebb rule determines the change in the weight connection

from u
i
 to u

j
 by ∆w

ij
 = α *y

i
 *y

j
, where α is the learning rate and y

i
, y

j
 represent the activations of u

i
 and

u
j
respectively. hus, if both u

i
 and u

j
 are activated the weight of the connection from u

i
 to u

j
 should be

increased.

Examples can be given of input/output associations which can be learned by a two-layer Hebb rule pattern

associator. In fact, it can be proved that if the set of input patterns used in training are mutually orthogonal,

the association can be learned by a two-layer pattern associator using Hebbian learning. However, if the

set of input patterns are not mutually orthogonal, interference may occur and the network may not be

able to learn associations. his limitation of Hebbian learning can be overcome by using the delta rule.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Introduction to Soft Computing

98

Neural Computing

Delta rule

he delta rule (Russell 2005), also called the Least Mean Square (LMS) method, is one of the most

commonly used learning rules. For a given input vector, the output vector is compared to the correct

answer. If the diference is zero, no learning takes place; otherwise, the weights are adjusted to reduce

this diference. he change in weight from u
i
 to u

j
 is given by: ∆w

ij
 = α * y

i
 * e

j
, where α is the learning

rate, y
i
 represents the activation of u

i
 and e

j
is the diference between the expected output and the actual

output of u
j
. If the set of input patterns form a linearly independent set then arbitrary associations can

be learned using the delta rule.

his learning rule not only moves the weight vector nearer to the ideal weight vector, it does so in the

most eicient way. he delta rule implements a gradient descent by moving the weight vector from the

point on the surface of the paraboloid down toward the lowest point, the vertex.

In the case of linear activation functions where the network has no hidden units, the delta rule will always

ind the best set of weight vectors. On the other hand, that is not the case for hidden units. he error

surface is not a paraboloid and so does not have a unique minimum point. here is no such powerful

rule as the delta rule for networks with hidden units. here have been a number of theories in response to

this problem. hese include the generalized delta rule and the unsupervised competitive learning model.

http://bookboon.com/
http://bookboon.com/count/advert/09268424-498c-48c4-a852-a25700ed3ed3

Download free eBooks at bookboon.com

Introduction to Soft Computing

99

Neural Computing

Generalizing the ideas of the delta rule, consider a hierarchical network with an input layer, an output

layer and a number of hidden layers. We consider only the case where there is one hidden layer. he

network is presented with input signals which produce output signals that act as input to the middle

layer. Output signals from the middle layer in turn act as input to the output layer to produce the inal

output vector. his vector is compared to the desired output vector. Since both the output and the desired

output vectors are known, we can calculate diferences between both outputs and get an error of neural

network. he error is backpropagated from the output layer through the middle layer to the unit which

are responsible for generating that output. he delta rule can be used to adjust all the weights. More

details are presented in (Fausett 1994).

4.3 The perceptron

he perceptron (Figure 67) is a simplest type of artiicial neural networks that is linear and based on

a threshold θ transfer function. he perceptron can only classify linearly separable cases with a binary

target 1 or 0.

Figure 67: The perceptron (adapted from http://www.saedsayad.com/artiicial_neural_network_bkp.htm)

he perceptron algorithm was invented in 1957 at the Cornell Aeronautical Laboratory by Frank

Rosenblatt (Beale and Jackson 1992).

he single layer perceptron does not have a priori knowledge, so the initial weights are assigned randomly.

he perceptron sums all the weighted inputs and if the sum is above the threshold (some predetermined

value), it is said to be activated (output=1).

http://www.saedsayad.com/artificial_neural_network_bkp.htm
http://bookboon.com/

Download free eBooks at bookboon.com

Introduction to Soft Computing

100

Neural Computing

he input values are presented to the perceptron, and if the predicted output is the same as the desired

output, then the performance is considered satisfactory and no changes to the weights are made. However,

if the output does not match the desired output, then the weights need to be changed to reduce the error.

Perceptron Weight Adjustment is the following:

xdw ××=∆ α
α is a learning rate, usually less than 1,

d is a “predicted output – desired output”,

x represents input data.

As the perceptron is a linear classiier and if the cases are not linearly separable, the learning process will

never reach a point where all the cases are classiied properly. he most famous example of the inability of

perceptron to solve problems with linearly non-separable cases is the XOR problem (Figure 68). However,

a multi-layer perceptron using the backpropagation algorithm can successfully classify the XOR data.

Figure 68: XOR problem (adapted from http://www.saedsayad.com/artiicial_neural_network_bkp.htm)

http://www.saedsayad.com/artificial_neural_network_bkp.htm
http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Introduction to Soft Computing

101

Neural Computing

Example

A perceptron for the AND function: binary inputs, binary targets. For simplicity, we take learning rate

α = 1 and threshold θ = 0,2.

Get Help Now

Go to www.helpmyassignment.co.uk for more info

Need help with your
dissertation?
Get in-depth feedback & advice from experts in your

topic area. Find out what you can do to improve

the quality of your dissertation!

http://bookboon.com/
http://bookboon.com/count/advert/93324fb6-34af-4083-97e3-a15f00b15c50

Download free eBooks at bookboon.com

Introduction to Soft Computing

102

Neural Computing

Figure 69

-

- -

+

x2

x1

: Final decision boundaries for AND function in perceptron learning

he positive response is given by all points such that: 2x
1
 + 3x

2
 -4 > 0.2

with boundary line:
5

7

3

2
12 +−= xx .

he negative response is given by all points such that: 2x
1
 + 3x

2
 -4 < – 0.2

with boundary line: x x2 1

2

3

19

15
= − + .

4.4 Multilayer networks

Many authors agree that multilayer feedforward neural networks (Figure 70) belong to the most common

ones in practical use. Usually a fully connected variant is used, so that each neuron from the n-th layer

is connected to all neurons in the (n+1)-th layer, but it is not necessary and in general some connections

may be missing. here are also no connections between neurons of the same layer. A subset of input

units has no input connections from other units; their states are ixed by the problem. Another subset of

units is designated as output units; their states are considered the result of the computation. Units that

are neither input nor output are known as hidden units, (Hertz and Kogh 1991).

Each problem speciies a training set of associated pairs of vectors for the input units and output units.

he full speciication of a network to solve a given problem involves enumerating all units, the connections

between them, and setting the weights on those connections. he irst two tasks are commonly solved

in an ad hoc or heuristic manner, while the inal task is usually accomplished with the aid of a learning

algorithm, such as backpropagation. his algorithm belongs to a group called “gradient descent methods”.

An intuitive deinition is that such an algorithm searches for the global minimum of the weight landscape

by descending downhill in the most precipitous direction (Figure 71).

http://bookboon.com/

Download free eBooks at bookboon.com

Introduction to Soft Computing

103

Neural Computing

Figure 70: A multilayer feedforward neural network (adapted from http://homepages.gold.ac.uk/nikolaev/311multi.htm)

he initial position is set at random (note that there is no a priori knowledge about the shape of the

landscape) selecting the weights of the network from some range (typically from 1 to 1 or from 0 to 1).

It is obvious that the initial position on the weight landscape greatly inluences both the length and the

path made when seeking the global minimum. In some cases it is even impossible to get to the optimal

position due to the occurrence of some deep local minima. Considering the diferent points, it is clear,

that backpropagation using a fully connected neural network is not a deterministic algorithm. Now,

a more formal deinition of the backpropagation algorithm (for a three layer network) is presented,

(Fausett 1994).

1. he input vector is presented to the network.

2. he feedforward is performed, so that each neuron computes its output following the

formula over neurons in previous layer:

 +−∑+

=
=

n

j

ijj bwx

i

e

o

11

1

http://homepages.gold.ac.uk/nikolaev/311multi.htm
http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Introduction to Soft Computing

104

Neural Computing

3. he error on the output layer is computed for each neuron using the desired output (y
j
) on

the same neuron:

()()jjjjj oyooerr −−= 10

4. he error is propagated back to the hidden layer over all the hidden neurons (h
i
) and

weights between each of them and over all neurons in the output layer:

()∑=−= r

j

ijjii

h

i werrhherr
1

001

5. Having values 0

jerr and
h

ierr computed, the weights from the hidden to the output layer

and from the input to the hidden layer can be adjusted using the following formulas

() ()
() () i

h

j

h

ij

h

ij

ijijij

xerrtwtw

herrtwtw

α
α

+=+
+=+

1

1 000

where α is the learning coeicient and x
i
 is the i-th neuron in the input layer.

By 2020, wind could provide one-tenth of our planet’s

electricity needs. Already today, SKF’s innovative know-

how is crucial to running a large proportion of the

world’s wind turbines.

Up to 25 % of the generating costs relate to mainte-

nance. These can be reduced dramatically thanks to our

systems for on-line condition monitoring and automatic

lubrication. We help make it more economical to create

cleaner, cheaper energy out of thin air.

By sharing our experience, expertise, and creativity,

industries can boost performance beyond expectations.

Therefore we need the best employees who can

meet this challenge!

The Power of Knowledge Engineering

Brain power

Plug into The Power of Knowledge Engineering.

Visit us at www.skf.com/knowledge

http://bookboon.com/
http://bookboon.com/count/advert/0d9efd82-96d7-e011-adca-22a08ed629e5

Download free eBooks at bookboon.com

Introduction to Soft Computing

105

Neural Computing

6. All the preceding steps are repeated until the total error of the network over all training

pairs does not fall under certain level, where m is number of output neurons.

()∑= −= m

i

ii oyE
1

2

2

1

he formulas in step three and four are products of derivation of the error function on each node. A

detailed explanation of this derivation as well as of the complete algorithm can be found in (Hertz and

Kogh 1991).

Figure 71: An intuitive approach to the gradient descent method, looking for the global minimum:

a) is the starting point, b) is the inal one.

4.5 Kohonen self-organizing maps

Kohonen Self-Organizing Maps (or just Self-Organizing Maps, or SOMs for short), are a type of neural

network. hey were developed in 1982 by Tuevo Kohonen, a professor emeritus of the Academy of

Finland. Self-Organizing Maps are aptly named “Self-Organizing” because no supervision is required.

SOMs learn on their own through unsupervised competitive learning. “Maps” is because they attempt to

map their weights to conform to the given input data. he nodes in a SOM network attempt to become

like the inputs presented to them. In this sense, this is how they learn.

http://bookboon.com/

Download free eBooks at bookboon.com

Introduction to Soft Computing

106

Neural Computing

Figure 72: A map of the world quality-of-life (adapted from http://www.shy.am).

Figure 73: SOM of world quality-of-life (adapted from http://www.shy.am).

http://www.shy.am
http://www.shy.am
http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Introduction to Soft Computing

107

Neural Computing

SOM can also be called “Feature Maps”, as in Self-Organizing Feature Maps. Retaining principle ‘features’

of the input data is a fundamental principle of SOMs, and one of the things that makes them so valuable.

Speciically, the topological relationships between input data are preserved when mapped to a SOM network.

his has a pragmatic value of representing complex data. Figure 72 represents a map of the world quality-

of-life. Yellows and oranges represent wealthy nations, while purples and blues are the poorer nations. From

this view, it can be diicult to visualize the relationships between countries. However, represented by a SOM

as shown if Figure 73, it is much easier to see what is going on. Here we can see the United States, Canada,

and Western European countries, on the let side of the network, being the wealthiest countries. he poorest

countries, then, can be found on the opposite side of the map (at the point farthest away from the richest

countries), represented by the purples and blues. Figure 73 is a hexagonal grid. Each hexagon represents a

node in the neural network. his is typically called a uniied distance matrix, and is probably the most popular

method of displaying SOMs. Another intrinsic property of SOMs is known as vector quantization. his is a

data compression technique. SOMs provide a way of representing multidimensional data in a much lower

dimensional space – typically one or two dimensions. his aides in their visualization beneit, as humans are

more proicient at comprehending data in lower dimensions than higher dimensions, as can be seen in the

comparison of Figure 72 to Figure 73. he above examples show how SOMs are a valuable tool in dealing with

complex or vast amounts of data. In particular, they are extremely useful for the visualization and representation

of these complex or large quantities of data in manner that is most easily understood by the human brain.

http://bookboon.com/
http://bookboon.com/count/advert/7df08111-c180-4bd8-97db-a2d500e6043a

Download free eBooks at bookboon.com

Introduction to Soft Computing

108

Neural Computing

Structure of a SOM

he structure of a SOM is fairly simple, and is best understood with the use of an illustration such as

Figure 74.

Figure 74: Structure of a SOM (adapted from http://www.shy.am).

Figure 74 is a 4×4 SOM network (4 nodes down, 4 nodes across). It is easy to overlook this structure

as being trivial, but there are a few key things to notice. First, each map node is connected to each

input node. For this small 4×4 node network, that is 4×4×3=48 connections. Secondly, notice that map

nodes are not connected to each other. he nodes are organized in this manner, as a 2-D grid makes it

easy to visualize the results. his representation is also useful when the SOM algorithm is used. In this

coniguration, each map node has a unique (i, j) coordinate. his makes it easy to reference a node in

the network, and to calculate the distances between nodes. Because of the connections only to the input

nodes, the map nodes are oblivious as to what values their neighbours have. A map node will only update

its’ weights (explained next) based on what the input vector tells it.

he following relationships describe what a node essentially is:

1. network ⊂ mapNode ⊂ loat weights [numWeights]

2. inputVectors ⊂ inputVector ⊂ loat weights [numWeights]

http://www.shy.am
http://bookboon.com/

Download free eBooks at bookboon.com

Introduction to Soft Computing

109

Neural Computing

he irst relationship says that the network (the 4×4 grid above) contains map nodes. A single map node

contains an array of loats, or its weights. numWeights will become more apparent during application

discussion. he only other common item that a map node should contain is its (i, j) position in the

network.

he second relationship says that the collection of input vectors (or input nodes) contains individual

input vectors. Each input vector contains an array of loats, or its’ weights. Note that numWeights is the

same for both weight vectors. he weight vectors must be the same for map nodes and input vectors or

the algorithm will not work.

he SOM algorithm

he Self-Organizing Map algorithm can be broken up into 6 steps (Beale and Jackson 1992).

1. Each node’s weights are initialized.

2. A vector is chosen at random from the set of training data and presented to the network.

3. Every node in the network is examined to calculate which ones’ weights are most like the

input vector. he winning node is commonly known as the Best Matching Unit (BMU).

 ()2
0

2 ∑= −= n

i

ii WIputDistFromIn

I is current input vector
W is node’s weight vector
n is number of weights

4. he radius of the neighborhood of the BMU is calculated. his value starts large. Typically it

is set to be the radius of the network, diminishing each time-step.

Radius of the neighborhood:

() ()λσσ /

0

tet −=
t is current iteration

λ is time constant

σ
0
 is radius of the map

Time constant:

λ = numIterations / mapRadius

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Introduction to Soft Computing

110

Neural Computing

5. Any nodes found within the radius of the BMU calculated in 4) are adjusted to make them

more like the input vector (Equation 3a, 3b).

New weight of a node:

 () () () () () ()()tWtItLttWtW −Θ+=+1

Learning rate:

() []λ/

0

teLtL −=
he closer a node is to the BMU, the more its weights are altered:
Distance from BMU:

 () ()()()tUdistFromBMet
22 2/ σ−=Θ

6. Repeat 2) for N iterations.

here are some things to note about these formulas. Equation from step 3 represents simply the Euclidean

distance formula, squared. It is squared because we are not concerned with the actual numerical distance

from the input. We just need some sort of uniform scale in order to compare each node to the input

vector. his equation provides that eliminating the need for a computationally expensive square root

operation for every node in the network.

http://bookboon.com/
http://bookboon.com/count/advert/fba1fd82-96d7-e011-adca-22a08ed629e5

Download free eBooks at bookboon.com

Introduction to Soft Computing

111

Neural Computing

Equations from step 4 utilize exponential decay. At t=0 they are at their max. As t (the current iteration

number) increases, they approach zero. his is exactly what we want. he radius should start out as the

radius of the lattice, and approach zero, at which time the radius is simply the BMU node (see Figure 75).

he time constant value is almost arbitrary and can be chosen. his provides a good value, though, as

it depends directly on the map size and the number of iterations to perform.

Figure 75: Radius of the neighbourhood (adapted from http://www.shy.a)

Equation from step 5 is the main learning function. W(t+1) is the new, ‘educated’, weight value of the

given node. Over time, this equation essentially makes a given node weight more like the currently

selected input vector, I. A node that is very diferent from the current input vector will learn more than

a node very similar to the current input vector. he diference between the node weight and the input

vector are then scaled by the current learning rate of the SOM, and by Θ(t).

Θ(t) is used to make nodes closer to the BMU learn more than nodes on the outskirts of the current

neighborhood radius. Nodes outside of the neighborhood radius are skipped completely. distFromBMU

is the actual number of nodes between the current node and the BMU, easily calculated as: distFrom

BMU 2= (bmuI – nodeI)2+(bmuJ−nodeJ)2

his can be done since the node network is just a 2-D grid of nodes. With this in mind, nodes on the

very fringe of the neighbourhood radius will learn some fraction less 1.0. As distFromBMU decreases,

Θ(t) approaches 1.0. he BMU itself will have a distFromBMU equal to 0, which gives Θ(t) it’s maximum

value of 1.0. Again, this Euclidean distance remains squared to avoid the square root operation.

http://www.shy.am
http://bookboon.com/

Download free eBooks at bookboon.com

Introduction to Soft Computing

112

Neural Computing

here exists a lot of variations regarding the equations used with the SOM algorithm. here is also a lot of

research being done on the optimal parameters. Some things of particular heavy debate are the number

of iterations, the learning rate, and the neighborhood radius. It has been suggested by Kohonen himself,

however, that the training should be split into two phases. Phase 1 will reduce the learning coeicient

from 0.9 to 0.1, and the neighbourhood radius from half the diameter of the lattice to the immediately

surrounding nodes. Phase 2 will reduce the learning rate from 0.1 to 0.0, but over double or more the

number of iterations in Phase 1. In Phase 2, the neighbourhood radius value should remain ixed at 1

(the BMU only). Analysing these parameters, Phase 1 allows the network to quickly ‘ill out the space’,

while Phase 2 performs the ‘ine-tuning’ of the network to a more accurate representation.

Example – Colour Classiication

Colour classiication SOMs only use three weights per map and input nodes. hese weights represent the

(R,G,B) triplet for the colour. For example, colours may be presented to the network – (1,0,0) for red,

(0,1,0) for green, etc. he goal for the network here is to learn how to represent all of these input colours

on its 2-D grid while maintaining the intrinsic properties of a SOM such as retaining the topological

relationships between input vectors. With this in mind, if dark blue and light blue are presented to the

SOM, they should end up next to each other on the network grid.

To illustrate the process, we will step through the algorithm for the colour classiication application.

Step 1 is the initialisation of the network. Figure 76 shows a newly initialised network. Each square is

a node in the network.

Figure 76: An initialised network (adapted from http://www.shy.am)

http://www.shy.am
http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Introduction to Soft Computing

113

Neural Computing

Step 1. he initialisation method used here is to assign a random value between 0.0 and 1.0 for each

component (r, g, and b) of each node.

Step 2 is to choose a vector at random from the input vectors. Eight input vectors are used in this example,

ranging from red to yellow to dark green.

Step 3 goes through every node and inds the BMU, as described earlier. Figure 77 shows the BMU being

selected in the 4x4 network.

Step 4 of the algorithm calculates the neighbourhood radius. his is also shown in Figure 77. All the

nodes tinted red are within the radius. Step 5 then applies the learning functions to all of these nodes.

It is based on their distance from the BMU. he BMU (dark red) learns the most, while nodes on the

outskirts of the radius (light pink) learn the least. Nodes outside of the radius (white) don’t learn at all. We

then go back to Step 2 and repeat. Figure 78 shows a trained SOM, representing all eight input colours.

Notice how light green is next to dark green, and red is next to orange. An ideal map would probably

have light blue next to dark blue. his is where the Error Map comes into play, which is described next.

EXPERIENCE THE POWER OF

FULL ENGAGEMENT…

 RUN FASTER.

 RUN LONGER..

 RUN EASIER…

READ MORE & PRE-ORDER TODAY

WWW.GAITEYE.COM

Challenge the way we run

http://bookboon.com/
http://bookboon.com/count/advert/bb104666-5119-403f-91c4-a3e7010cbfdf

Download free eBooks at bookboon.com

Introduction to Soft Computing

114

Neural Computing

Figure 77: Best Matching Unit (BMU) (adapted from http://www.shy.am)

Figure 78: The BMU window (adapted from http://www.shy.am)

http://www.shy.am
http://www.shy.am
http://bookboon.com/

Download free eBooks at bookboon.com

Introduction to Soft Computing

115

Neural Computing

here are two other windows in the colour classiication application. hese are the BMU Window and

the Error Map. hese windows are not active until ater the network is trained. First we describe the

BMU window. Upon successful SOM training, this window will show small white dots. hese white dots

represent the N most frequently used BMU nodes, where N is the number of input vectors (unless N < #

of iterations. hen, N = # of iterations). hese nodes have been deemed to be a BMU the most times

out of all the nodes in the network, presenting the least distance possible between a map node and the

selected input vector for the given iteration. Figure 79 shows this window. Notice how Figure 79 could

be placed on top of Figure 78, and the dots would correspond to the centers of the circles.

Figure 79: Dots correspond to the centres of the circles in Figure 76 (adapted

from http://www.shy.am).

Next, the Error Map is calculated (Figure 79). Each time a SOM is trained, it can produce a completely

diferent result given the same input data. his is because the network is initialised with random colours,

presenting a unique setup prior to each training session. Also, this occurs because input vectors to be

presented to the network are chosen at random. With this in mind, some SOMs may turn out ‘better’

than others, where ‘better’ is a measure of how well the topological data is preserved.

http://www.shy.am
http://bookboon.com/

Download free eBooks at bookboon.com

Introduction to Soft Computing

116

Neural Computing

Figure 80: Error map corresponding with Figure 78 (adapted from http://www.shy.am).

To calculate an error map, loop through every map node of the network. Add up the distance (not the

physical distance, but the weight distance. his is exactly the same as how the BMU is calculated) from

the node we are currently evaluating, to each of its neighbours. Average this distance. Multiply this by 3

(the number of weights used), assuming no square root is used to calculate the distance between adjacent

nodes. If the square root operation is used, multiply by 3 instead. Assign this value to the node. his

gives each map node a nice value between 0.0 and 1.0. hese values can then be used as the R = G = B

values for each square of the Error Map window. Pure white represents the maximum possible distance

between adjacent nodes, while black shows that adjacent nodes are all the same colour. Shades of gray

in between give an even iner explanation, with darker grays being a better map than a map with light

grays. Figure 80 shows an example. Notice the lines and how they line up with Figure 78.

4.6 Hopield networks

A Hopield network is a form of recurrent artiicial neural network invented by John Hopield. Hopield

nets serve as content-addressable memory systems with binary (bipolar) threshold nodes. hey are

guaranteed to converge to a local minimum, but convergence to a false pattern (wrong local minimum)

rather than the stored pattern (expected local minimum) can occur. Hopield networks also provide a

model for understanding human memory.

Figure 81 shows a diagram representing a facial recognition system using a Hopield network. he pixels

are initially converted into black and white and the background is removed. Aterwards, the image is

given to the network, which will eventually converge to the image on the right that the network used

to train with.

http://www.shy.am
http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Introduction to Soft Computing

117

Neural Computing

Figure 81: A diagram representing a facial recognition system using a Hopield network

(adapted from http://en.wikipedia.org/wiki/File:Face_recognition_with_hopield_network.jpg

he units in Hopield nets only take on two diferent values for their states and the value is determined

by whether or not the units’ input exceeds their threshold. Hopield nets normally have units that take

on values of 1 and -1 resp. 0 and 1.

http://en.wikipedia.org/wiki/File:Face_recognition_with_hopfield_network.jpg
http://bookboon.com/
http://bookboon.com/count/advert/4190a6d8-133a-4700-b7de-9ffa01018ca9

Download free eBooks at bookboon.com

Introduction to Soft Computing

118

Neural Computing

Every two units i and j of a Hopield network have a connection that is described by the connectivity

weight w
ij
. In this sense, the Hopield network can be formally described as a complete undirected graph.

he connections in a Hopield net typically have the following restrictions:

•	 (no unit has a connection with itself)

•	 (connections are symmetric)

he requirement that weights be symmetric is typically used, as it will guarantee that the energy function

decreases monotonically while following the activation rules, and the network may exhibit some periodic

or chaotic behaviour if non-symmetric weights are used.

Figure 82: Hopield network.

(adapted from http://upload.wikimedia.org/wikipedia/commons/9/95/Hopield-net.png)

Updating one unit (node in the graph simulating the artiicial neuron) in the Hopield network is

performed using the following rule:

−

>= ∑
.otherwise1

if1
j ijij

i

sw
s

θ

where:

w
ij
 is the strength of the connection weight from unit j to unit i (the weight of the connection).

s
j
 is the state of unit j.

θ
i
 is the threshold of unit i.

http://upload.wikimedia.org/wikipedia/commons/9/95/Hopfield-net.png
http://bookboon.com/

Download free eBooks at bookboon.com

Introduction to Soft Computing

119

Neural Computing

Updates in the Hopield network can be performed in two diferent ways:

•	 Asynchronous: Only one unit is updated at a time. his unit can be picked at random, or a

pre-deined order can be imposed from the very beginning.

•	 Synchronous: All units are updated at the same time. his requires a central clock to the

system in order to maintain synchronisation. his method is less realistic, since biological or

physical systems lack a global clock that keeps track of time.

Neurons attract or repel each other. he weight between two units has a powerful impact upon the

values of the neurons. Consider the connection weight w
ij

between two neurons i and j. If w
ij
 > 0, the

updating rule implies that:

•	 when s
j
 = 1, the contribution of j in the weighted sum is positive. hus, s

i
is pulled by j

towards its value s
j
 = 1

•	 when s
j
 = -1, the contribution of j in the weighted sum is negative. hen again, s

i
is pulled by

j towards its value s
j
 = -1

hus, the values of neurons i and j will converge if the weight between them is positive. Similarly, they

will diverge if the weight is negative.

Energy

Hopield nets have a scalar value associated with each state of the network referred to as the “energy”

(Figure 83), E, of the network, where:

∑ ∑+−=
ji i

iijiij ssswE
,2

1 θ

his value is called the “energy” because the deinition ensures that when units are randomly chosen to

update, the energy E will either lower in value or stay the same. Furthermore, under repeated updating

the network will eventually converge to a state which is a local minimum in the energy function. hus,

if a state is a local minimum in the energy function, it is a stable state for the network. Note that this

energy function belongs to a general class of models in physics.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Introduction to Soft Computing

120

Neural Computing

Figure 83: Energy Landscape of a Hopield Network, highlighting the current state of the network (up the hill), an attractor state to

which it will eventually converge, a minimum energy level and a basin of attraction shaded in green. Note how the update of the

Hopield Network is always going down in Energy.

(adapted from http://upload.wikimedia.org/wikipedia/commons/4/49/Energy_landscape.png)

Training a Hopield net

Initialization of the Hopield Networks is done by setting the values of the units to the desired start

pattern. Repeated updates are then performed until the network converges to an attractor pattern. In

the context of Hopield Networks, an attractor pattern is a pattern that cannot change any value within

it under updating.

www.sylvania.com

We do not reinvent

the wheel we reinvent

light.
Fascinating lighting offers an ininite spectrum of

possibilities: Innovative technologies and new

markets provide both opportunities and challenges.

An environment in which your expertise is in high

demand. Enjoy the supportive working atmosphere

within our global group and beneit from international

career paths. Implement sustainable ideas in close

cooperation with other specialists and contribute to

inluencing our future. Come and join us in reinventing

light every day.

Light is OSRAM

http://upload.wikimedia.org/wikipedia/commons/4/49/Energy_landscape.png
http://bookboon.com/
http://bookboon.com/count/advert/ae925238-62e0-4fca-a4f2-a24b0097a136

Download free eBooks at bookboon.com

Introduction to Soft Computing

121

Neural Computing

Training a Hopield net involves lowering the energy of states that the net should “remember”. his allows

the net to serve as a content addressable memory system, that is to say, the network will converge to a

“remembered” state if it is given only part of the state. he net can be used to recover from a distorted

input to the trained state that is most similar to that input. his is called associative memory because it

recovers memories on the basis of similarity.

here are various diferent learning rules that can be used to store information in the memory of the

Hopield Network. It is desirable for a learning rule to have both of the following two properties:

•	 Local: A learning rule is local if each weight is updated using information available to

neurons on either side of the connection that is associated with that particular weight.

•	 Incremental: New patterns can be learned without using information from the old patterns

that have been also used for training. hat is, when a new pattern is used for training, the

new values for the weights only depend on the old values and on the new pattern (Storkey

and Valabregue 1999).

hese properties are desirable, since a learning rule satisfying them is more biologically plausible. For

example, since the human brain is always learning new concepts, one can reason that human learning

is incremental. A learning system that would not be incremental would generally be trained only once,

with a huge batch of training data.

he Hebbian heory has been introduced by Donald Hebb (Hebb 1949), in order to explain “associative

learning” in which simultaneous activation of neuron cells leads to pronounced increases in synaptic

strength between those cells. It is oten summarized as “Neurons that ire together, wire together. Neurons

that ire out of sync, fail to link”.

he Hebbian rule is both local and incremental. For the Hopfeld networks, it is implemented in the

following manner, when learning n binary patterns:

∑== n

k

k

j

k

iij xx
n

w
1

1

where k

ix represents bit i from pattern k.

If the bits corresponding to neurons i and j are equal in pattern k, then the product k

j

k

i xx will be positive.

his would, in turn, have a positive efect on the weight w
ij
 and the values of i and j will tend to become

equal. he opposite happens if the bits corresponding to neurons i and j are diferent.

http://bookboon.com/

Download free eBooks at bookboon.com

Introduction to Soft Computing

122

Neural Computing

he Network capacity of the Hopield network model is determined by neuron amounts and connections

within a given network. herefore, the number of memories that are able to be stored are dependent

on neurons and connections. herefore, it is evident that many mistakes will occur if you try to store

a large number of vectors. When the Hopield model does not recall the right pattern, it is possible

that an intrusion has taken place, since semantically related items tend to confuse the individual, and

recollection of the wrong pattern occurs. herefore, the Hopield network model is shown to confuse

one stored item with that of another upon retrieval.

Human memory

he Hopield model accounts for associative memory through the incorporation of memory vectors.

Memory vectors can be slightly used, and this would spark the retrieval of the most similar vector in the

network. However, we will ind out that due to this process, intrusions can occur. In associative memory

for the Hopield network, there are two types of operations: auto-association and hetero-association.

he irst being when a vector is associated with itself, and the latter being when two diferent vectors

are associated in storage. Furthermore, both types of operations are possible to store within a single

memory matrix, but only if that given representation matrix is not one or the other of the operations,

but rather the combination (auto-associative and hetero-associative) of the two. It is important to note

that Hopield network model utilizes the same learning rule as Hebb learning rule, which basically tried

to show that learning occurs as a result of the strengthening of the weights by when activity is occurring.

(Rizzuto and Kahana 2001) were able to show that the neural network model can account for repetition

on recall accuracy by incorporating a probabilistic-learning algorithm. During the retrieval process, no

learning occurs. As a result, the weights of the network remains ixed, showing that the model is able to

switch from a learning stage to a recall stage. By adding contextual drit we are able to show the rapid

forgetting that occurs in a Hopield model during a cued-recall task. he entire network contributes to

the change in the activation of any single node.

(McCullough and Pitts 1943), dynamical rule, which describes the behavior of neurons, does so in a

way that shows how the activations of multiple neurons map onto the activation of a new neuron’s iring

rate, and how the weights of the neurons strengthen the synaptic connections between the new activated

neuron (and those that activated it). Hopield would use McCullough-Pitts’s dynamical rule in order to

show how retrieval is possible in the Hopield network. However, it is important to note that Hopield

would do so in a repetitious fashion. Hopield would use a nonlinear activation function, instead of

using a linear function. his would therefore create the Hopield dynamical rule and with this, Hopield

was able to show that with the nonlinear activation function, the dynamical rule will always modify the

values of the state vector in the direction of one of the stored patterns.

http://bookboon.com/

